# MATH 54 - MOCK FINAL EXAM - SOLUTIONS 

PEYAM RYAN TABRIZIAN

1. (10 points, 2 points each)

Label the following statements as $\mathbf{T}$ or $\mathbf{F}$. Write your answers in the box below?

NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) FALSE If $Q$ has orthogonal columns, then $Q$ is an orthogonal matrix
(The columns of $Q$ have to be orthonormal)
(b) TRUE If $\hat{\mathbf{x}}$ is the orthogonal projection of $\mathbf{x}$ on $W$, then $\mathbf{x}-\hat{\mathbf{x}}$ is always orthogonal to $\hat{\mathbf{x}}$.
(Draw a picture!)
(c) FALSE The least-squares solution $\widetilde{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$ has the property that $\|A \mathbf{x}-\mathbf{b}\| \leq\|A \widetilde{\mathbf{x}}-\mathbf{b}\|$ for every $\mathbf{x}$
(It has the property that $\|A \widetilde{\mathbf{x}}-\mathbf{b}\| \leq\|A \mathbf{x}-\mathbf{b}\|$, i.e. it minimizes the least-squares error)
(d) FALSE If a set $\mathcal{B}$ is orthogonal, then $\mathcal{B}$ is linearly independent
(It could contain the $\mathbf{0}$-vector! However, if you ignore the $\mathbf{0}$ vector, then it is linearly independent)
(e) FALSE $\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}c \\ d\end{array}\right]=a c$ defines a dot/inner product on $\mathbb{R}^{2}$.

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=(0)(0)=0 \quad \text { even though } \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] \neq \mathbf{0}
$$

(The point is that the last property of dot products is usually very good to check if something is not a dot product!)
2. (15 points) Use the Gram-Schmidt process to find an orthonormal basis for $W$, where:

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right]\right\}
$$

Define:

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \mathbf{u}_{\mathbf{3}}=\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right]
$$

First, let's find an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ for $W$ :
Step 1: Let $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$
Step 2: Calculate:

$$
\hat{\mathbf{u}}_{\mathbf{2}}=\left(\frac{\mathbf{u}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}=\frac{2}{2}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

And let:

$$
\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\hat{\mathbf{u}}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right]
$$

Note: You can easily check that $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=0$. This is a good way to check if you got the right answer!

Step 3: Calculate:

$$
\hat{\mathbf{u}_{3}}=\left(\frac{\mathbf{u}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}+\left(\frac{\mathbf{u}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}}=\frac{2}{2}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]+\frac{2}{2}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]
$$

And let:

$$
\mathbf{v}_{\mathbf{3}}=\mathbf{u}_{\mathbf{3}}-\hat{\mathbf{u}}_{\mathbf{3}}=\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right]-\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

Note: You can check that $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=0$ and $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{3}}=0$.
Step 4: Normalize:
$\mathbf{w}_{\mathbf{1}}=\frac{\mathbf{v}_{\mathbf{1}}}{\left\|\mathbf{v}_{\mathbf{1}}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \quad \mathbf{w}_{\mathbf{2}}=\frac{\mathbf{v}_{\mathbf{2}}}{\left\|\mathbf{v}_{\mathbf{2}}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right] \quad \mathbf{w}_{\mathbf{3}}=\frac{\mathbf{v}_{\mathbf{3}}}{\left\|\mathbf{v}_{\mathbf{3}}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]$
Answer:

$$
\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}=\left\{\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]\right\}
$$

3. (15 points) Find the least-squares solution and least-squares error to the following (inconsistent) system of equations $A \mathbf{x}=\mathbf{b}$, where:

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

We need to solve:

$$
A^{T} A \widetilde{\mathbf{x}}=A^{T} \mathbf{b}
$$

But:

$$
A^{T} A=\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right]
$$

And

$$
A^{T} \mathbf{b}=\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]=\left[\begin{array}{c}
19 \\
11
\end{array}\right]
$$

Hence we need to solve:

$$
\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

Now you can either compute the inverse of the matrix, or rowreduce:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
17 & 1 & 19 \\
1 & 5 & 11
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
17 & 1 & 19 \\
0 & -84 & -168
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
17 & 1 & 19 \\
0 & 1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
17 & 0 & 17 \\
0 & 1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

(For the first row-reduction, I substracted 17 times the second row from the first! Also, I apologize for the messy algebra, the algebra on the final will be simpler)

Hence, we get:

$$
\widetilde{\mathbf{x}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

## Least-squares error:

$$
\begin{aligned}
\|A \widetilde{\mathbf{x}}-\mathbf{b}\| & =\left\|\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
11
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{c}
2 \\
4 \\
-8
\end{array}\right]\right\| \\
& =\sqrt{2^{2}+4^{2}+(-8)^{2}} \\
& =\sqrt{4+16+64} \\
& =\sqrt{84}
\end{aligned}
$$

4. (30 points) Solve the following heat equation:

$$
\left\{\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}} & 0<x<1, & t>0 \\
u(0, t) & =u(1, t)=0 & t>0 \\
u(x, 0) & =x & 0<x<1
\end{array}\right.
$$

Note: You may not use ANY for the formulas given in the book! You have to do it from scratch, including the 3 cases.

Note: The following formula might be useful:

$$
\int_{-1}^{1} \cos ^{2}(\pi m x)=\int_{-1}^{1} \sin ^{2}(\pi m x)=1
$$

## Step 1: Separation of variables. Suppose:

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{1}
\end{equation*}
$$

Plug (1) into the differential equation (), and you get:

$$
\begin{aligned}
(X(x) T(t))_{t} & =(X(x) T(t))_{x x} \\
X(x) T^{\prime}(t) & =X^{\prime \prime}(x) T(t)
\end{aligned}
$$

Rearrange and get:

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{T(t)} \tag{2}
\end{equation*}
$$

Now $\frac{X^{\prime \prime}(x)}{X(x)}$ only depends on $x$, but by (2) only depends on $t$, hence it is constant:

$$
\begin{align*}
& \frac{X^{\prime \prime}(x)}{X(x)}=\lambda  \tag{3}\\
& X^{\prime \prime}(x)=\lambda X(x)
\end{align*}
$$

Also, we get:

$$
\begin{aligned}
& \frac{T^{\prime}(t)}{T(t)}=\lambda \\
& T^{\prime}(t)=\lambda T(t)
\end{aligned}
$$

but we'll only deal with that later (Step 4)

Step 2: Consider (3):

$$
X^{\prime \prime}(x)=\lambda X(x)
$$

Note: Always start with $X(x)$, do NOT touch $T(t)$ until right at the end!

Now use the boundary conditions in ():

$$
\begin{aligned}
& u(0, t)=X(0) T(t)=0 \Rightarrow X(0) T(t)=0 \Rightarrow X(0)=0 \\
& u(1, t)=X(1) T(t)=0 \Rightarrow X(1) T(t)=0 \Rightarrow X(1)=0
\end{aligned}
$$

Hence we get:

$$
\left\{\begin{align*}
X^{\prime \prime}(x) & =\lambda X(x)  \tag{5}\\
X(0) & =0 \\
X(1) & =0
\end{align*}\right.
$$

Step 3: Eigenvalues/Eigenfunctions. The auxiliary polynomial of (5) is $p(\lambda)=r^{2}-\lambda$

Now we need to consider 3 cases:
Case 1: $\lambda>0$, then $\lambda=\omega^{2}$, where $\omega>0$
Then:

$$
r^{2}-\lambda=0 \Rightarrow r^{2}-\omega^{2}=0 \Rightarrow r= \pm \omega
$$

Therefore:

$$
X(x)=A e^{\omega x}+B e^{-\omega x}
$$

Now use $X(0)=0$ and $X(1)=0$ :

$$
X(0)=0 \Rightarrow A+B=0 \Rightarrow B=-A \Rightarrow X(x)=A e^{\omega x}-A e^{-\omega x}
$$

$X(1)=0 \Rightarrow A e^{\omega}-A e^{-\omega}=0 \Rightarrow A e^{\omega}=A e^{-\omega} \Rightarrow e^{\omega}=e^{-\omega} \Rightarrow \omega=-\omega \Rightarrow \omega=0$
But this is a contradiction, as we want $\omega>0$.
Case 2: $\lambda=0$, then $r=0$, and:

$$
X(x)=A e^{0 x}+B x e^{0 x}=A+B x
$$

And:

$$
\begin{gathered}
X(0)=0 \Rightarrow A=0 \Rightarrow X(x)=B x \\
X(1)=0 \Rightarrow B=0 \Rightarrow X(x)=0
\end{gathered}
$$

Again, a contradiction (we want $X \neq 0$, because otherwise $u(x, t) \equiv$ 0)

Case 3: $\lambda<0$, then $\lambda=-\omega^{2}$, and:

$$
r^{2}-\lambda=0 \Rightarrow r^{2}+\omega^{2}=0 \Rightarrow r= \pm \omega i
$$

Which gives:

$$
X(x)=A \cos (\omega x)+B \sin (\omega x)
$$

Again, using $X(0)=0, X(1)=0$, we get:

$$
X(0)=0 \Rightarrow A=0 \Rightarrow X(x)=B \sin (\omega x)
$$

$$
X(1)=0 \Rightarrow B \sin (\omega)=0 \Rightarrow \sin (\omega)=0 \Rightarrow \omega=\pi m, \quad(m=1,2, \cdots)
$$

This tells us that:
Eigenvalues: $\lambda=-\omega^{2}=-(\pi m)^{2} \quad(m=1,2, \cdots)$
Eigenfunctions: $X(x)=\sin (\omega x)=\sin (\pi m x)$
Step 4: Deal with (4), and remember that $\lambda=-(\pi m)^{2}$ :

$$
T^{\prime}(t)=\lambda T(t) \Rightarrow T(t)=A e^{\lambda t}=T(t)=\widetilde{A_{m}} e^{-(\pi m)^{2} t} \quad m=1,2, \cdots
$$

Note: Here we use $\widetilde{A_{m}}$ to emphasize that $\widetilde{A_{m}}$ depends on $m$.
Step 5: Take linear combinations:

$$
\begin{equation*}
u(x, t)=\sum_{m=1}^{\infty} T(t) X(x)=\sum_{m=1}^{\infty} \widetilde{A_{m}} e^{-(\pi m)^{2} t} \sin (\pi m x) \tag{7}
\end{equation*}
$$

Step 6: Use the initial condition $u(x, 0)=x$ in ():

$$
\begin{equation*}
u(x, 0)=\sum_{m=1}^{\infty} \widetilde{A_{m}} \sin (\pi m x)=x \quad \text { on }(0,1) \tag{8}
\end{equation*}
$$

Now we want to express $x$ as a linear combination of sines, so we have to use a sine series (that's why we used $\widetilde{A_{m}}$ instead of $A_{m}$ ):

$$
\begin{aligned}
\widetilde{A_{m}} & =\frac{2}{1} \int_{0}^{1} x \sin (\pi m x) d x \\
& =2\left(\left[-x \frac{\cos (\pi m x)}{\pi m}\right]_{0}^{1}-\int_{0}^{1}-\frac{\cos (\pi m x)}{\pi m} d x\right) \\
& =2\left(-\frac{\cos (\pi m)}{\pi m}+\int_{0}^{1} \frac{\cos (\pi m x)}{\pi m} d x\right) \\
& =2\left(-\frac{(-1)^{m}}{\pi m}+\left[\frac{\sin (\pi m x)}{(\pi m)^{2}}\right]_{0}^{1}\right) \\
& =\frac{2(-1)^{m+1}}{\pi m} \quad(m=1,2, \cdots)
\end{aligned}
$$

## Step 7: Conclude using (9)

$$
\begin{equation*}
u(x, t)=\sum_{m=1}^{\infty} \frac{2(-1)^{m+1}}{\pi m} e^{-(\pi m)^{2} t} \sin (\pi m x) \tag{9}
\end{equation*}
$$

## 5. (15 points)

(a) (10 points) Find the Fourier cosine series of $f(x)=x^{2}$ on $(0, \pi)$
We want to find $A_{m}$ such that:

$$
x^{2 "}=" \sum_{m=0}^{\infty} A_{m} \cos (m x)
$$

Now 'evenify' $f$ to get $\tilde{f}$ (see lecture), and then:

$$
A_{0}=\frac{\int_{-\pi}^{\pi} \tilde{f}(x)}{\int_{-\pi}^{\pi} 1^{2}}=\frac{2}{2 \pi} \int_{0}^{\pi} x^{2}=\frac{1}{\pi}\left(\frac{\pi^{3}}{3}\right)=\frac{\pi^{2}}{3}
$$

And:

$$
A_{m}=\frac{\int_{-\pi}^{\pi} \widetilde{f}(x) \cos (m x)}{\int_{-\pi}^{\pi} \cos ^{2}(m x)}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (m x)
$$

To evaluate this, use tabular integration (see lecture), and you get:

$$
\begin{aligned}
A_{m} & =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (m x) d x \\
& =\frac{2}{\pi}\left[+x^{2}\left(\frac{\sin (m x)}{m}\right)-2 x\left(\frac{-\cos (m x)}{m^{2}}\right)+2\left(\frac{-\sin (m x)}{m^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left(2 \pi \frac{\cos (\pi m)}{m^{2}}\right) \\
& =\frac{4(-1)^{m}}{m^{2}}
\end{aligned}
$$

(b) (5 points) Draw the graph of the function to which the above Fourier series $\mathcal{F}$ converges to on $(-3 \pi, 3 \pi)$

Notice that since $x^{2}$ is even on $(-\pi, \pi), \widetilde{f}(x)=f(x)=x^{2}$, then, since there are no jumps and the values at the endpoints are the same, we get that $\mathcal{F}(x)=f(x)=x^{2}$ on $(-\pi, \pi)$ and to get the graph of $\mathcal{F}$ over $(-3 \pi, 3 \pi)$, just 'repeat' the graph of $x^{2}$ one more time on the right, and one more time on the left!

As a result, you get the following picture:
54/Math 54 Summer/Exams/Mockfinalgraph.png


## 6. (15 points)

Prove the parallelogram identity:

$$
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}
$$

Note: Do it in general, not just for $\mathbb{R}^{n}$

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})+(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{u}-\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v} \\
& =2(\mathbf{u} \cdot \mathbf{u})+2(\mathbf{v} \cdot \mathbf{v}) \\
& =2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}
\end{aligned}
$$

